Maximality and Resurrection

Kaethe Minden

Vermont, USA

Winter School in Abstract Analysis Hejnice, CZ 31 January 2019

The Maximality Principle

The maximality principle has been studied in various forms by Stavi, Väänänen, Hamkins, Fuchs, and Leibman.

Definition

Let Γ be a class of notions of forcing that is defined by some formula $\psi_{\Gamma}(x, p)$, where p is a parameter. In cascaded modal operator usages, $\psi_{\Gamma}(x, p)$ is to be evaluated in the forcing extensions.

We say that a sentence $\varphi(\vec{a})$ is Γ -forceable if there is $\mathbb{P} \in \Gamma$ such that for every $q \in \mathbb{P}$, we have that $q \Vdash \varphi(\vec{a})$. In other words, a sentence is Γ -forceable if it is forced to be true in an extension by a forcing from Γ .

In modal notation, write $\Diamond \varphi$.

A sentence $\varphi(\vec{a})$ is Γ -necessary if for all $\mathbb{P} \in \Gamma$ and all $q \in \mathbb{P}$, we have that $q \Vdash \varphi(\vec{a})$. So a sentence is Γ -necessary if it holds in any forcing extension by a forcing from Γ . In modal notation, write $\Box \varphi$.

If S is a term in the language of set theory, then the Maximality Principle for Γ with parameters from S, which we denote MP_Γ(S), is the scheme of formulae stating that every sentence with parameters from S which is Γ -forceably Γ -necessary is true; i.e., the sentence " $\varphi(\vec{a})$ is Γ -necessary" is Γ -forceable, is true. In modal notation, write: $\Diamond \Box \varphi \implies \varphi$.

Parameters?

 $S = H_{\omega_1}$ is the natural parameter set for MP(S). Write **MP** for the boldface version of the maximality principle for all forcing, i.e., **MP** = MP(H_{ω_1}).

Lemma (Fuchs)

Let Γ be a class of forcing notions which contains forcing notions which may collapse cardinals to ω_1 , but no forcing in Γ may collapse a cardinal to be ω . Then $MP_{\Gamma}(S) \implies S \subseteq H_{\omega_2}$.

Write MP_c for $MP_{<\omega_1-closed}(H_{\omega_2})$, $MP_p = MP_{proper}(H_{\omega_2})$.

Lemma (Hamkins)

Let Γ be a class of forcing notions which may add an arbitrary amount of reals, but cannot collapse sizes. Then $MP_{\Gamma}(S) \implies S \subseteq H_{c}$.

Thus write MP_{ccc} for $MP_{ccc}(H_c)$.

Consistency of the maximality principle

A regular cardinal κ is **fully reflecting** so long as $V_{\kappa} \prec V$.

Theorem (Hamkins)

If **MP** holds then \aleph_1^V is fully reflecting in L.

Proof.

Assume $L \models \exists z \ \varphi(z, \vec{a}), \ \vec{a} \in L_{\omega_1}$. Consider the sentence: "The least ordinal γ such that there is $b \in L_{\gamma}$ with $\varphi^L(b, \vec{a})$ has cardinality at most \aleph_0 ." By **MP** it is true, meaning that there is a witness for the existential statement in L_{ω_1} .

Theorem (Hamkins)

Let δ be fully reflecting. Then there are forcing extensions in which the following hold:

- MP and $\delta = \mathfrak{c} = \aleph_1$.
- MP_{ccc} and δ = c.
- MP_p and $\delta = \mathfrak{c} = \aleph_2$.
- \mathbf{MP}_c and $\delta = \aleph_2$ and \mathbf{CH} .

and so on.

Forcing Maximality from a Fully Reflecting Cardinal

Proof outline.

Define \mathbb{P}_{κ} , a finite support iteration, as follows:

For $\alpha < \kappa$, let Φ be the collection of sentences $\varphi(\vec{a})$ where $\vec{a} \in (H_{\omega_1})^{V_{\kappa}^{\mathbb{F}_{\alpha}}}$ and $V_{\kappa}^{\mathbb{P}_{\alpha}} \models "\varphi(\vec{a})$ is forceably necessary but false." Let $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$, where $\dot{\mathbb{Q}}_{\alpha} = \bigoplus_{\varphi(\vec{a}) \in \Phi} \mathcal{Q}$ and \mathcal{Q} is the collection of least rank posets in $V_{\kappa}^{\mathbb{P}_{\alpha}}$ forcing that $\varphi(\vec{a})$ is necessary.

Let's see why this works.

Assume $\varphi(\vec{a})$, where $\vec{a} \in H_{\omega_1}$ satisfies: $V[G] \models "\varphi(\vec{a})$ is forceably necessary but false".

- Since ℙ has the κ-cc, there has to be some stage where a appears. We may argue that there is a β < κ such that there is a least rank ℚ forcing φ(a) to be necessary in V_κ[G_β], as κ is fully reflecting.
- Obtain $V[G_{\beta}][H][G_{tail}] = V[G]$.
- Since $\varphi(\vec{a})$ is necessary in $V_{\kappa}[G_{\beta}][H]$, we have that $\varphi(\vec{a})$ is necessary in $V[G_{\beta}][H]$, by elementarity.
- Thus $\varphi(\vec{a})$ is true in $V[G_{\beta}][H][G_{tail}]$, a contradiction.

The Local Maximality Principle

Definition

Let Γ be a reasonable class of forcing notions, and let S be a set of parameters. Let M be a defined term for a structure to be evaluated in forcing extensions, and $S \subseteq M$.

The Local Maximality Principle relative to $M(MP_{\Gamma}^{M}(S))$ is the statement that for every $\varphi(\vec{a})$, if $\varphi^{M}(\vec{a})$ is Γ -forceably Γ -necessary, then $\varphi^{M}(\vec{a})$ is true.

We look at $\text{LMP} = \text{MP}_{all}^{H_{\omega_1}}(H_{\omega_1})$, and $\text{LMP}_p = \text{MP}_{proper}^{H_{\omega_2}}(H_{\omega_2})$.

We have $MP \implies LMP$ and, for example, $MP_p \implies LMP_p \implies BPFA$.

An inaccessible cardinal κ is **locally uplifting** so long as for every $\varphi(\vec{a})$ with $\vec{a} \in V_{\kappa}$, for every θ there is an inaccessible $\gamma > \theta$ such that

$$V_{\kappa} \models \varphi(\vec{a}) \iff V_{\gamma} \models \varphi(\vec{a}).$$

We have κ is fully reflecting $\implies \kappa$ is locally uplifting $\implies \kappa$ is Σ_1 -reflecting.

Theorem (Consistency of Local Maximality)

- If κ is locally uplifting, then there is a forcing extension in which LMP holds and $\kappa = \aleph_1$.
- If LMP holds, then \aleph_1^V is locally uplifting in L.

The Resurrection Axiom

The resurrection axiom has been studied by Hamkins and Johnstone.

Definition

Let Γ be a fixed, definable class of forcing notions.

The (lightface) **Resurrection Axiom** $\mathsf{RA}_{\Gamma}(H_c)$ asserts that for every forcing notion $\mathbb{Q} \in \Gamma$ there is a further forcing \mathbb{R} with $\Vdash_{\mathbb{Q}} \mathbb{R} \in \Gamma$ such that if $g * h \subseteq \mathbb{Q} * \mathbb{R}$ is *V*-generic, then

$$H_{\mathfrak{c}}^{V} \prec H_{\mathfrak{c}}^{V[g*h]}$$

The **Boldface Resurrection Axiom** $\operatorname{RA}_{\Gamma}(H_c)$ asserts that for every forcing notion $\mathbb{Q} \in \Gamma$ and $A \subseteq H_c$ there is a further forcing \mathbb{R} with $\Vdash_{\mathbb{Q}} \mathbb{R} \in \Gamma$ such that if $g * h \subseteq \mathbb{Q} * \mathbb{R}$ is V-generic, then there is an $A^* \in V[G * h]$ such that

$$\langle H_{\mathfrak{c}}^{V}, \in, A \rangle \prec \langle H_{\mathfrak{c}}^{V[g*h]}, \in, A^{*} \rangle.$$

We consider $\mathbf{RA} = \mathbf{RA}_{all}(H_c)$, $\mathbf{RA}_{ccc} = \mathbf{RA}_{ccc}(H_c)$, and $\mathbf{RA}_p = \mathbf{RA}_{proper}(H_c)$.

Which structures to resurrect?

Sometimes it makes sense to consider different structures than H_c in the definition.

Lemma (Hamkins, Johnstone)

If Γ contains a forcing which forces CH but no forcing in Γ adds new reals, then $RA_{\Gamma}(H_{c})$ is equivalent to CH.

Proposition

Suppose Γ contains forcing to collapse to ω_1 and no forcing in Γ adds new reals. Then $\mathsf{RA}_{\Gamma}(H_{2^{\aleph_1}}) \iff 2^{\aleph_1} = \aleph_2 + \mathsf{RA}_{\Gamma}(H_{\omega_2}).$

We consider $\mathbf{RA}_c = \mathbf{RA}_c(H_{\omega_2})$.

Consistency of the Resurrection Axiom

An inaccessible cardinal κ is **uplifting** so long as for every ordinal θ there is an inaccessible $\gamma \ge \theta$ such that $V_{\kappa} \prec V_{\gamma}$ is a proper elementary extension.

We say that κ is strongly uplifting if it is strongly θ -uplifting if for every $A \subseteq V_{\kappa}$ there is an inaccessible $\gamma \geq \theta$ and a set $A^* \subseteq V_{\gamma}$ such that $\langle V_{\kappa}, \in, A \rangle \prec \langle V_{\gamma}, \in, A^* \rangle$ is a proper elementary extension.

Note κ is strongly uplifting $\implies \kappa$ is uplifting $\implies \kappa$ is locally uplifting $\implies \kappa$ is Σ_1 -reflecting.

Theorem (Hamkins, Johnstone)

- If **RA** holds then $\mathfrak{c}^V = \aleph_1^V$ is strongly uplifting in L.
- Let κ be strongly uplifting. Then there are forcing extensions in which we have the following:
 - **RA** and $\kappa = \mathbf{c} = \aleph_1$. **RA**_{ccc} and $\kappa = \mathbf{c}$. **RA**_p and $\kappa = \mathbf{c} = \aleph_2$. **RA**_c and $\kappa = \aleph_2$ and CH.

and so on.

Thus $\mathbf{RA} \implies \mathbf{RA} \implies \mathbf{LMP}$, and we have, e.g.: $\mathbf{RA}_p \implies \mathbf{RA}_p \implies \mathbf{LMP}_p \implies \mathbf{BPFA}$.

Resurrection's equiconsistency with the existence of a strongly uplifting cardinal

Proof sketch.

Let **RA** hold, and let $\kappa = \mathfrak{c}^V = \aleph_1^V$. Fix any cardinal $\theta > \kappa$, and consider $Coll(\omega, \theta)$. There is a further forcing such that $\langle H_{\mathfrak{c}}^V, \in, A \rangle \prec \langle H_{\mathfrak{c}}^{V[g*h]}, \in, A^* \rangle$. Let $\gamma = \mathfrak{c}^{V[g*h]}$. It follows that $\aleph_1^{V[g*h]} = \gamma$ and $\gamma > \theta$ and $\langle H_{\kappa}^L, \in, A \rangle \prec \langle H_{\gamma}^L, \in, A^* \rangle$, so κ is strongly uplifting in L.

Let κ be strongly uplifting. Define \mathbb{P}_{κ} , a finite support iteration, as follows: For $\alpha < \kappa$, let $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$ such that $\dot{\mathbb{Q}}_{\alpha} = \oplus \mathcal{Q}$ where \mathcal{Q} is the collection of least rank posets in $V_{\kappa}^{\mathbb{P}_{\alpha}}$ for which resurrection fails.

Suppose toward a contradiction that **RA** fails in V[G] as witnessed by \mathbb{Q} of least rank.

- Use the uplifting property of κ to argue that \mathbb{Q} appears at stage κ of the exact iteration defined in some large enough inaccessible γ to obtain $\mathbb{P}_{\gamma} = \mathbb{P}_{\kappa} * \dot{\mathbb{Q}} * \mathbb{P}_{tail}$.
- Lift the strongly uplifting embedding to $\langle H_{\kappa}[G_{\kappa}], \in, \mathbb{P}, \dot{A} \rangle \prec \langle H_{\gamma}[G_{\gamma}], \in, \mathbb{P}_{\gamma}, \dot{A}^* \rangle.$
- Thus $\langle H_{c}^{V[G]}, \in, A \rangle \prec \langle H_{c}^{V[G_{\gamma}]}, \in A^{*} \rangle$, a contradiction to \mathbb{Q} being a counterexample.

Maximality vs. Resurrection

So both MP and RA imply LMP. Do the two simply imply each other?

 $\neg(\mathsf{MP}\implies\mathsf{RA})$

If κ is fully reflecting, take the least γ such that $V_{\kappa} \prec V_{\gamma}$. If there isn't such a γ , then κ isn't uplifting anyway.

Then in V_{γ} , we have that κ is not even uplifting.

$\neg(\mathsf{RA} \implies \mathsf{MP})$

Working in a minimal model of T = ZFC + "V = L" + "there is a strongly uplifting cardinal" (i.e., no initial segment of the model satisfies this theory), we may force to obtain **RA**.

Now MP can't hold in the extension, since letting κ be the \aleph_1 of the extension, L_{κ} is elementary in L.

Combining Maximality and Resurrection

An inaccessible cardinal κ is strongly uplifting fully reflecting so long as:

- κ is fully reflecting, i.e. $V_{\kappa} \prec V$
- κ is strongly uplifting

If there is a subtle cardinal, then it is consistent that there is a strongly uplifting fully reflecting cardinal.

Theorem

If both RA and MP both hold, then c^V is strongly uplifting fully reflecting in L.

Theorem

Let κ be a strongly uplifting fully reflecting cardinal. Then there are forcing extensions in which we have the following:

- $\mathbf{RA} + \mathbf{MP} + \kappa = \mathfrak{c} = \aleph_1$.
- $\mathbf{RA}_{ccc} + \mathbf{MP}_{ccc} + \kappa = \mathfrak{c}$.
- $\mathbf{RA}_{p} + \mathbf{MP}_{p} + \kappa = \mathfrak{c} = \aleph_{2}.$
- $\mathbf{RA}_c + \mathbf{MP}_c + \kappa = \aleph_2 + CH.$

and so on.

Proof idea.

Let κ be strongly uplifting fully reflecting. Define \mathbb{P} as a finite support iteration of length κ so that $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$ where $\dot{\mathbb{Q}}_{\alpha}$ is a term for the lottery sum

$$\oplus \mathcal{R} \bigoplus \oplus \mathcal{M},$$

where \mathcal{R} is the collection of least-rank counterexamples to boldface resurrection, and \mathcal{M} is the collection of least-rank counterexamples to the maximality principle (defined as in those iterations).

Thank you.