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The Maximality Principle

The maximality principle has been studied in various forms by Stavi, Väänänen, Hamkins, Fuchs,
and Leibman.

Definition

Let Γ be a class of notions of forcing that is defined by some formula ψΓ(x , p), where p is a
parameter. In cascaded modal operator usages, ψΓ(x , p) is to be evaluated in the forcing
extensions.

We say that a sentence ϕ(~a) is Γ-forceable if there is P ∈ Γ such that for every q ∈ P, we have
that q  ϕ(~a). In other words, a sentence is Γ-forceable if it is forced to be true in an extension
by a forcing from Γ.
In modal notation, write ♦ϕ.

A sentence ϕ(~a) is Γ-necessary if for all P ∈ Γ and all q ∈ P, we have that q  ϕ(~a). So a
sentence is Γ-necessary if it holds in any forcing extension by a forcing from Γ.
In modal notation, write �ϕ.

If S is a term in the language of set theory, then the Maximality Principle for Γ with parameters
from S, which we denote MPΓ(S), is the scheme of formulae stating that every sentence with
parameters from S which is Γ-forceably Γ-necessary is true; i.e., the sentence “ϕ(~a) is
Γ-necessary” is Γ-forceable, is true.
In modal notation, write: ♦�ϕ =⇒ ϕ.
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Parameters?

S = Hω1 is the natural parameter set for MP(S). Write MP for the boldface version of the
maximality principle for all forcing, i.e., MP = MP(Hω1 ).

Lemma (Fuchs)

Let Γ be a class of forcing notions which contains forcing notions which may collapse cardinals to
ω1, but no forcing in Γ may collapse a cardinal to be ω. Then MPΓ(S) =⇒ S ⊆ Hω2 .

Write MPc for MP<ω1−closed (Hω2 ), MPp = MPproper (Hω2 ).

Lemma (Hamkins)

Let Γ be a class of forcing notions which may add an arbitrary amount of reals, but cannot
collapse sizes. Then MPΓ(S) =⇒ S ⊆ Hc.

Thus write MPccc for MPccc(Hc).

.
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Consistency of the maximality principle

A regular cardinal κ is fully reflecting so long as Vκ ≺ V .

Theorem (Hamkins)

If MP holds then ℵV1 is fully reflecting in L.

Proof.

Assume L |= ∃z ϕ(z, ~a), ~a ∈ Lω1 . Consider the sentence:
“The least ordinal γ such that there is b ∈ Lγ with ϕL(b, ~a) has cardinality at most ℵ0.”
By MP it is true, meaning that there is a witness for the existential statement in Lω1 .

Theorem (Hamkins)

Let δ be fully reflecting. Then there are forcing extensions in which the following hold:

MP and δ = c = ℵ1.

MPccc and δ = c.

MPp and δ = c = ℵ2.

MPc and δ = ℵ2 and CH.

and so on.
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Forcing Maximality from a Fully Reflecting Cardinal

Proof outline.

Define Pκ, a finite support iteration, as follows:

For α < κ, let Φ be the collection of sentences ϕ(~a) where ~a ∈ (Hω1 )V
Pα
κ and

V Pα
κ |= “ϕ(~a) is forceably necessary but false.” Let Pα+1 = Pα ∗ Q̇α, where Q̇α =

⊕
ϕ(~a)∈ΦQ

and Q is the collection of least rank posets in V Pα
κ forcing that ϕ(~a) is necessary.

Let’s see why this works.
Assume ϕ(~a), where ~a ∈ Hω1 satisfies: V [G ] |= “ϕ(~a) is forceably necessary but false”.

Since P has the κ-cc, there has to be some stage where ~a appears. We may argue that there
is a β < κ such that there is a least rank Q forcing ϕ(~a) to be necessary in Vκ[Gβ ], as κ is
fully reflecting.

Obtain V [Gβ ][H][Gtail ] = V [G ].

Since ϕ(~a) is necessary in Vκ[Gβ ][H], we have that ϕ(~a) is necessary in V [Gβ ][H], by
elementarity.

Thus ϕ(~a) is true in V [Gβ ][H][Gtail ], a contradiction.
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The Local Maximality Principle

Definition

Let Γ be a reasonable class of forcing notions, and let S be a set of parameters. Let M be a
defined term for a structure to be evaluated in forcing extensions, and S ⊆ M.

The Local Maximality Principle relative to M (MPM
Γ (S)) is the statement that for every ϕ(~a), if

ϕM(~a) is Γ-forceably Γ-necessary, then ϕM(~a) is true.

We look at LMP = MP
Hω1
all (Hω1 ), and LMPp = MP

Hω2
proper (Hω2 ).

We have MP =⇒ LMP and, for example, MPp =⇒ LMPp =⇒ BPFA.

An inaccessible cardinal κ is locally uplifting so long as for every ϕ(~a) with ~a ∈ Vκ, for every θ
there is an inaccessible γ > θ such that

Vκ |= ϕ(~a) ⇐⇒ Vγ |= ϕ(~a).

We have κ is fully reflecting =⇒ κ is locally uplifting =⇒ κ is Σ1-reflecting.

Theorem (Consistency of Local Maximality)

If κ is locally uplifting, then there is a forcing extension in which LMP holds and κ = ℵ1.

If LMP holds, then ℵV1 is locally uplifting in L.
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The Resurrection Axiom

The resurrection axiom has been studied by Hamkins and Johnstone.

Definition

Let Γ be a fixed, definable class of forcing notions.

The (lightface) Resurrection Axiom RAΓ(Hc) asserts that for every forcing notion Q ∈ Γ there is
a further forcing Ṙ with Q Ṙ ∈ Γ such that if g ∗ h ⊆ Q ∗ Ṙ is V -generic, then

HV
c ≺ H

V [g∗h]
c .

The Boldface Resurrection Axiom RAΓ(Hc) asserts that for every forcing notion Q ∈ Γ and
A ⊆ Hc there is a further forcing Ṙ with Q Ṙ ∈ Γ such that if g ∗ h ⊆ Q ∗ Ṙ is V -generic, then
there is an A∗ ∈ V [G ∗ h] such that

〈HV
c ,∈,A〉 ≺ 〈H

V [g∗h]
c ,∈,A∗〉.

We consider RA = RAall (Hc), RAccc = RAccc(Hc), and RAp = RAproper (Hc).
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Which structures to resurrect?

Sometimes it makes sense to consider different structures than Hc in the definition.

Lemma (Hamkins, Johnstone)

If Γ contains a forcing which forces CH but no forcing in Γ adds new reals, then RAΓ(Hc) is
equivalent to CH.

Proposition

Suppose Γ contains forcing to collapse to ω1 and no forcing in Γ adds new reals. Then
RAΓ(H2ℵ1 ) ⇐⇒ 2ℵ1 = ℵ2 + RAΓ(Hω2 ).

We consider RAc = RAc(Hω2 ).
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Consistency of the Resurrection Axiom

An inaccessible cardinal κ is uplifting so long as for every ordinal θ there is an inaccessible γ ≥ θ
such that Vκ ≺ Vγ is a proper elementary extension.

We say that κ is strongly uplifting if it is strongly θ-uplifting if for every A ⊆ Vκ there is an
inaccessible γ ≥ θ and a set A∗ ⊆ Vγ such that 〈Vκ,∈,A〉 ≺ 〈Vγ ,∈,A∗〉 is a proper elementary
extension.

Note κ is strongly uplifting =⇒ κ is uplifting =⇒ κ is locally uplifting =⇒ κ is Σ1-reflecting.

Theorem (Hamkins, Johnstone)

If RA holds then cV = ℵV1 is strongly uplifting in L.

Let κ be strongly uplifting. Then there are forcing extensions in which we have the following:

I RA and κ = c = ℵ1.
I RAccc and κ = c.
I RAp and κ = c = ℵ2.
I RAc and κ = ℵ2 and CH.

and so on.

Thus RA =⇒ RA =⇒ LMP, and we have, e.g.: RAp =⇒ RAp =⇒ LMPp =⇒ BPFA.
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Resurrection’s equiconsistency with the existence of a strongly uplifting
cardinal

Proof sketch.

Let RA hold, and let κ = cV = ℵV1 . Fix any cardinal θ > κ, and consider Coll (ω, θ). There is a

further forcing such that 〈HV
c ,∈,A〉 ≺ 〈H

V [g∗h]
c ,∈,A∗〉. Let γ = cV [g∗h]. It follows that

ℵV [g∗h]
1 = γ and γ > θ and 〈HL

κ,∈,A〉 ≺ 〈HL
γ ,∈,A∗〉, so κ is strongly uplifting in L.

Let κ be strongly uplifting. Define Pκ, a finite support iteration, as follows:
For α < κ, let Pα+1 = Pα ∗ Q̇α such that Q̇α = ⊕Q where Q is the collection of least rank

posets in V Pα
κ for which resurrection fails.

Suppose toward a contradiction that RA fails in V [G ] as witnessed by Q of least rank.

Use the uplifting property of κ to argue that Q appears at stage κ of the exact iteration
defined in some large enough inaccessible γ to obtain Pγ = Pκ ∗ Q̇ ∗ Ptail .

Lift the strongly uplifting embedding to 〈Hκ[Gκ],∈,P, Ȧ〉 ≺ 〈Hγ [Gγ ],∈,Pγ , Ȧ∗〉.

Thus 〈HV [G ]
c ,∈,A〉 ≺ 〈HV [Gγ ]

c ,∈ A∗〉, a contradiction to Q being a counterexample.
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Maximality vs. Resurrection

So both MP and RA imply LMP. Do the two simply imply each other?

¬(MP =⇒ RA)

If κ is fully reflecting, take the least γ such that Vκ ≺ Vγ . If there isn’t such a γ, then κ isn’t
uplifting anyway.

Then in Vγ , we have that κ is not even uplifting.

¬(RA =⇒ MP)

Working in a minimal model of T = ZFC + “V = L” + “there is a strongly uplifting cardinal”
(i.e., no initial segment of the model satisfies this theory), we may force to obtain RA.

Now MP can’t hold in the extension, since letting κ be the ℵ1 of the extension, Lκ is elementary
in L.
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Combining Maximality and Resurrection

An inaccessible cardinal κ is strongly uplifting fully reflecting so long as:

κ is fully reflecting, i.e. Vκ ≺ V

κ is strongly uplifting

If there is a subtle cardinal, then it is consistent that there is a strongly uplifting fully reflecting
cardinal.

Theorem

If both RA and MP both hold, then cV is strongly uplifting fully reflecting in L.

Theorem

Let κ be a strongly uplifting fully reflecting cardinal. Then there are forcing extensions in which
we have the following:

RA + MP + κ = c = ℵ1.

RAccc + MPccc + κ = c.

RAp + MPp + κ = c = ℵ2.

RAc + MPc + κ = ℵ2 + CH.

and so on.
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Forcing MP + RA

Proof idea.

Let κ be strongly uplifting fully reflecting. Define P as a finite support iteration of length κ so
that Pα+1 = Pα ∗ Q̇α where Q̇α is a term for the lottery sum

⊕R
⊕
⊕M,

where R is the collection of least-rank counterexamples to boldface resurrection, and M is the
collection of least-rank counterexamples to the maximality principle (defined as in those
iterations).
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Thank you.
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